{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Plotly Choropleths\n", "\n", "This example reviews plotting a choropleth from a GeoDataFrame using plotly." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import mapped\n", "import geopandas as gpd\n", "import plotly\n", "mapped.__version__, gpd.__version__, plotly.__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First load some example polygon data." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gdf = gpd.read_file(gpd.datasets.get_path('nybb'))\n", "\n", "gdf['Population'] = [\n", " 479_458, \n", " 2_358_582,\n", " 2_648_771,\n", " 1_664_727,\n", " 1_471_160,\n", "]\n", "\n", "gdf.set_index('BoroName', inplace=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Importing `mapped` monkeypatches `geopandas` to add several tools to \n", "the `geopandas.GeoDataFrame` class, including `plotly_choropleth`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gdf.plotly_choropleth('Population')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For another example, let's plot the same election results data as found in the [plotly express mapbox choropleth example](https://plotly.com/python/mapbox-county-choropleth/#indexing-by-geojson-properties). We can load this example data as a GeoDataFrame from the mapped.example_data module." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from mapped.example_data import election" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "election_data = election()\n", "election_data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The plotly express `choropleth_mapbox` function is great, but it requires a lot of arguments to be set to work properly." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import plotly.express as px\n", "\n", "fig = px.choropleth_mapbox(\n", " election_data, \n", " geojson=election_data.__geo_interface__,\n", " color=\"Bergeron\",\n", " locations=\"district\", \n", " featureidkey=\"properties.district\",\n", " center={\"lat\": 45.5517, \"lon\": -73.7073},\n", " zoom=9,\n", ")\n", "plotly.graph_objects.FigureWidget(fig)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can use the `mapped` interface to create substantially the same plot with just a single argument: the column to use to colorize the choropleth." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "election_data.plotly_choropleth(color=\"Bergeron\")" ] }, { "cell_type": "raw", "metadata": { "raw_mimetype": "text/restructuredtext" }, "source": [ ".. currentmodule:: mapped\n", "\n", ".. automethod:: GeoDataFrame.plotly_choropleth" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }